Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
\begin{array}{l}\int_{0}^{t} f(\tau) f(t-\tau) d \tau=5040 t^{7} \\\Rightarrow \quad(f * f)(t)=5040 t^{7} \text {. } \\\text { [- con volution of } \\f \& g \text { is } f_{t} * g \\\left.=\int_{0}^{*} f(\tau) g(t-r) d \tau\right) \\\end{array}We shall solve this problem using Laplace transform.So, taking Laplace transform we get \rightarrow\begin{array}{l}L\{(f * f)(t)\}=5040 L\left\{t^{7}\right\} . \\\Rightarrow L\{f\} L\{f\}=5040 \cdot \frac{7 !}{s^{7+1}} \\\Rightarrow F(s) \cdot f(s)=\frac{5040 \times 7 !}{s^{8}} \quad[\because L\{f(t)\} \\\Rightarrow[F(s)]^{2}=\frac{5040 \times 7 !}{5^{8}} \\=F(s)] \\\Rightarrow \quad f(s)= \pm \frac{5040}{54} \\\Rightarrow L\{f(t)\}= \pm \frac{5040}{5^{4}} \\\Rightarrow \quad f(t)= \pm 5040 L^{-1}\left\{\frac{1}{54}\right\} \\\Rightarrow f(t)= \pm 5040 \cdot \frac{t^{3}}{31} \\= \pm 5040 \cdot \frac{t^{3}}{6} \\\therefore f(t)=840 t^{3},-840 t^{3} \\\end{array} ...