Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
(3)(a) virchhoff's law aspling kol in \operatorname{loop}(1) we get\begin{array}{c}6-8 I_{1}-v_{x}-3 I_{2}+3 v_{x}=0 \\6-8 I_{1}-3 I_{2}+2 v_{x}=0\end{array}uipling hui in loop(2) we yet\begin{array}{l}-4 I_{3}-8-3 v_{x}+3 I_{2}=0 \\-4\left(I_{1}+I_{2}\right)-8-3 v_{x}+3 I_{2}=0 \\-4 I_{1}-4 I_{2}-8-3 v_{x}+3 I_{2}=0 \\-4 I_{1}-I_{2}-8-3 v_{x}=0 \\4 v_{x}=-6 I_{1}\end{array}so we sat 6-8 I_{1}-3 I_{2}+2\left(-6 I_{1}\right)=0\begin{array}{c}6-8 I_{1}-3 I_{2}-12 I_{1}=0 \\-20 I_{1}-3 I_{2}=-6 \\20 I_{1}+3 I_{2}=6 \\-4 I_{1}-I_{2}-8-3\left(-6 I_{1}\right)=0 \\-4 I_{1}-I_{2}-8+18 I_{1}=0 \\14 I_{1}-I_{2}=8\end{array}solviny eqn (5) & (6) we get\begin{array}{l}I_{1}=0.4838 \mathrm{~A} \quad I_{2}=-1.225 \mathrm{~A} \\U_{x}=-6\left(I_{1}\right)=-6(0.4838)=-2.9028001 \mathrm{~s}\end{array}(b) millman's theorem\begin{array}{l}v_{E q}=v_{x}=\frac{\sum \pm v_{i} b_{i}}{\sum q_{i}} \text { (millman's } \quad \text { equdion) } \\v_{x}=\frac{\sum v_{1} u_{1}+v_{2} u_{2}+v_{3} u_{3}}{u_{1}+4_{2}+u_{3}} \\v_{x}=\frac{(-6 \times 1 / 8)+\left(-\beta v_{x} \times \frac{1}{8}\right)+\left(8 \times \frac{1}{4}\right)}{1 / 8+\frac{1}{3}+y_{4}} \\v_{x}=\frac{-0.75+\left(-v_{x} x\right)+2}{0.7083} \\0.7083 v_{x}=-0.75-v_{x}+2 \\1.7083 v^{2}=1.25 \\v_{x}=\frac{1.2 r}{1.7088_{3}}=0.7317 \mathrm{~V} \\\end{array}(4)(a) kirchoff's law4 p i giny hut in loop (1)\begin{aligned}-4 & -2 I_{1}-4 I_{2}-8=0 \\& -2 I_{1}-4 I_{2}=12 \\& 2 y_{1}+4 I_{2}=-12 \Rightarrow q_{1}+2 I_{2}=-6\end{aligned}applying kNL in lap (2)\begin{array}{l}-6 I_{3}-3 I_{3}+3 u_{x}+8-4 I_{2}=0 \\-9 I_{3}+3 x+8-4 I_{2}=0 \\v_{x}=4 I_{2} \\-9 I_{3}+12 I_{2}+8-4 I_{2}=0 \\-9\left(I_{1}+I_{2}\right)-11 I_{2}+8-4 I_{2}=0 \\-9 I_{1}-I_{2}=-8 \\9 I_{1}+I_{2}=8\end{array}solving equn (1) & (2) we get\begin{array}{l}I_{1}=1.294 \mathrm{~A}, I_{2}=-3.647 \mathrm{~A} \\N_{x}=4 I_{2}=-4 \times 3.647=-14.581\end{array}(b) Linnan's theorein\begin{array}{l}v_{e q}=\nu_{\lambda}=\frac{\sum \geq v_{i} u_{i}}{\sum q_{i}} \\v_{x}=\frac{\sum_{i=1}^{3} v_{1} u_{1}+v_{2} u_{2}+v_{3} u_{3}}{\sum_{i=1} G_{1}+u_{2}+G_{3}} \\V_{x}=\frac{-\left(4 \times v_{2}\right)+\left(-8 \times \frac{1}{4}\right)+\left(/ 3 v_{x} \times \frac{v_{0}}{\frac{9}{3}}\right)}{1 / 2+\frac{1}{4}+1 / 4} \\v_{x}=\frac{-\not x+\frac{z x+3}{x+v_{x}}}{0.8611} \Rightarrow v_{x}=\frac{-4+v_{x x} / 3}{0.8611} \\0.86112^{2} x=-4+\frac{1}{3} \\v x\left[0.8611-\frac{1}{3}\right]=-4 \\0.5277 v x=-4 \\u_{x}=-7.58 \mathrm{v} \\\end{array} ...