Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Given Data:Applying Equilibrium condition along the axis of the Bearn (Ie) x & y disection as mentioned in figue.\begin{array}{l}\Sigma H=0 \Rightarrow H_{A} \cos \theta+V_{A} \sin \theta+V_{B} \sin \theta=0 \\H_{A} \cos \theta+V_{A} \sin \theta+2826.8=0 \\\sum V=0 \\\Rightarrow V_{B} \cos \theta+V_{A} \cos \theta-H_{A} \sin \theta=700 \times 4.61 \\=3227 \\2422.8+V_{A} \cos \theta-H_{A} \sin \theta=3227 \\-H_{A} \sin \theta+r_{A} \cos \theta=804.122 \\\sum M_{A}=0 \Rightarrow V_{B} \cos \theta \times 3.07+\left(V_{B} \sin \theta \times 0\right) \\=900 \times 4.61 \times \frac{4.61}{2} \\\Rightarrow V_{B}=3723.07 \mathrm{~N} \text { Ans. } \\\end{array}Solving (1) 4 (2), we get\Rightarrow \begin{array}{l}H_{A}=-2450.155 \mathrm{~N} \\V_{A}=-1623.0 \mathrm{~N}\end{array} \mathrm{An}indicates assumd diredion Annegative sign indicats assumed direction is Nrong? ...