Question Solved1 Answer Which ordered pair is in the solution set of the following system of linear inequalities? y<2x+2 y>=-x-1 (-1,0) (0,3) (-1,-4) (2,0)

KURCBB The Asker · Other Mathematics

Which ordered pair is in the solution set of the following system of linear inequalities? y<2x+2 y>=-x-1 (-1,0) (0,3) (-1,-4) (2,0)

Transcribed Image Text: Which ordered pair is in the solution set of the following system of linear inequalities? y<2x+2 y>=-x-1 (-1,0) (0,3) (-1,-4) (2,0)
More
Transcribed Image Text: Which ordered pair is in the solution set of the following system of linear inequalities? y<2x+2 y>=-x-1 (-1,0) (0,3) (-1,-4) (2,0)
See Answer
Add Answer +20 Points
Community Answer
R6OHLB The First Answerer
See all the answers with 1 Unlock
Get 4 Free Unlocks by registration

Step1/4mjx-container[jax="CHTML"]{line-height: 0;}mjx-container [space="2"]{margin-left: .167em;}mjx-container [space="3"]{margin-left: .222em;}mjx-container [space="4"]{margin-left: .278em;}mjx-assistive-mml{position: absolute !important; top: 0px; left: 0px; clip: rect(1px, 1px, 1px, 1px); padding: 1px 0px 0px 0px !important; border: 0px !important; display: block !important; width: auto !important; overflow: hidden !important; -webkit-touch-callout: none; -webkit-user-select: none; -khtml-user-select: none; -moz-user-select: none; -ms-user-select: none; user-select: none;}mjx-math{display: inline-block; text-align: left; line-height: 0; text-indent: 0; font-style: normal; font-weight: normal; font-size: 100%; font-size-adjust: none; letter-spacing: normal; border-collapse: collapse; word-wrap: normal; word-spacing: normal; white-space: nowrap; direction: ltr; padding: 1px 0;}mjx-mi{display: inline-block; text-align: left;}mjx-c{display: inline-block;}mjx-mo{display: inline-block; text-align: left;}mjx-mn{display: inline-block; text-align: left;}mjx-mrow{display: inline-block; text-align: left;}mjx-c::before{display: block; width: 0;}.MJX-TEX{font-family: MJXZERO, MJXTEX;}@font-face{font-family: MJXZERO; src: url("https://cdn.jsdelivr.net/npm/mathjax@3/es5/output/chtml/fonts/woff-v2/MathJax_Zero.woff") format("woff");}@font-face{font-family: MJXTEX; src: url("https://cdn.jsdelivr.net/npm/mathjax@3/es5/output/chtml/fonts/woff-v2/MathJax_Main-Regular.woff") format("woff");}mjx-c.mjx-c79::before{padding: 0.431em 0.528em 0.204em 0; content: "y";}mjx-c.mjx-c3C::before{padding: 0.54em 0.778em 0.04em 0; content: "&lt;";}mjx-c.mjx-c32::before{padding: 0.666em 0.5em 0 0; content: "2";}mjx-c.mjx-c78::before{padding: 0.431em 0.528em 0 0; content: "x";}mjx-c.mjx-c2B::before{padding: 0.583em 0.778em 0.082em 0; content: "+";}mjx-c.mjx-c2265::before{padding: 0.636em 0.778em 0.138em 0; content: "\2265";}mjx-c.mjx-c2212::before{padding: 0.583em 0.778em 0.082em 0; content: "\2212";}mjx-c.mjx-c31::before{padding: 0.666em 0.5em 0 0; content: "1";}mjx-c.mjx-c28::before{padding: 0.75em 0.389em 0.25em 0; content: "(";}mjx-c.mjx-c2C::before{padding: 0.121em 0.278em 0.194em 0; content: ",";}mjx-c.mjx-c30::before{padding: 0.666em 0.5em 0.022em 0; content: "0";}mjx-c.mjx-c29::before{padding: 0.75em 0.389em 0.25em 0; content: ")";}mjx-c.mjx-c21D2::before{padding: 0.525em 1em 0.024em 0; content: "\21D2";}Given system of linear inequalities is y&lt;2x+2 (1) y&#8805;&#8722;x&#8722;1 (2)Now we put(&#8722;1,0) in (1) we have 0&lt;2(&#8722;1)+2&#8658;0&lt;0,which is false.Again 0&#8805;&#8722;(&#8722;1)&#8722;1&#8658;0&#8805;0,which is true.But since (&#8722;1,0)is not satisfy (1),So (&#8722;1,0)is not solution of this system.Explanation:Please refer to solution in this step.Step2/4mjx-container[jax="CHTML"]{line-height: 0;}mjx-container [space="2"]{margin-left: .167em;}mjx-container [space="3"]{margin-left: .222em;}mjx-container [space="4"]{margin-left: .278em;}mjx-assistive-mml{position: absolute !important; top: 0px; left: 0px; clip: rect(1px, 1px, 1px, 1px); padding: 1px 0px 0px 0px !important; border: 0px !important; display: block !important; width: auto !important; overflow: hidden !important; -webkit-touch-callout: none; -webkit-user-select: none; -khtml-user-select: none; -moz-user-select: none; -ms-user-select: none; user-select: none;}mjx-math{display: inline-block; text-align: left; line-height: 0; text-indent: 0; font-style: normal; font-weight: normal; font-size: 100%; font-size-adjust: none; letter-spacing: normal; border-collapse: collapse; word-wrap: normal; word-spacing: normal; white-space: nowrap; direction: ltr; padding: 1px 0;}mjx-mrow{display: inline-block; text-align: left;}mjx-mo{display: inline-block; text-align: left;}mjx-c{display: inline-block;}mjx-mn{display: inline-block; text-align: left;}mjx-c::before{display: block; width: 0;}.MJX-TEX{font-family: MJXZERO, MJXTEX;}@font-face{font-family: MJXZERO; src: url("https://cdn.jsdelivr.net/npm/mathjax@3/es5/output/chtml/fonts/woff-v2/MathJax_Zero.woff") format("woff");}@font-face{font-family: MJXTEX; src: url("https://cdn.jsdelivr.net/npm/mathjax@3/es5/output/chtml/fonts/woff-v2/MathJax_Main-Regular.woff") format("woff");}mjx-c.mjx-c28::before{padding: 0.75em 0.389em 0.25em 0; content: "(";}mjx-c.mjx-c30::before{padding: 0.666em 0.5em 0.022em 0; content: "0";}mjx-c.mjx-c2C::before{padding: 0.121em 0.278em 0.194em 0; content: ",";}mjx-c.mjx-c33::before{padding: 0.665em 0.5em 0.022em 0; content: "3";}mjx-c.mjx-c29::before{padding: 0.75em 0.389em 0.25em 0; content: ")";}mjx-c.mjx-c3C::before{padding: 0.54em 0.778em 0.04em 0; content: "&lt;";}mjx-c.mjx-c32::before{padding: 0.666em 0.5em 0 0; content: "2";}mjx-c.mjx-c2B::before{padding: 0.583em 0.778em 0.082em 0; content: "+";}mjx-c.mjx-c21D2::before{padding: 0.525em 1em 0.024em 0; content: "\21D2";}Now we put (0,3)in (1) ,we get 3&lt;2(0)+2&#8658;3&lt;2, which is false.So (0,3) cannot be solution of given system.Explanation:Please refer to solution in this step.Ste ... See the full answer