With reference to the network shown in Fig.
10.19, find the input impedance Zin that would be measured between terminals: (a) a and g; (b) b and g; (c) a and b
Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Step 1The circuit diagram is,\omega=1000 \mathrm{rad} / \mathrm{s}Determining the impedance of the element,\begin{aligned} Z_{\text {5mH }} & =j \omega L \\ & =j(1000)\left(5 \times 10^{-3}\right) \\ & =j 5 \Omega \\ Z_{20 \mathrm{mH}} & =j \omega L \\ & =j(1000)\left(20 \times 10^{-3}\right) \\ & =j 20 \Omega\end{aligned}\begin{aligned} Z_{200 \mu F} & =-\frac{j}{\omega C} \\ & =-\frac{j}{1000 \times 200 \times 10^{-6}} \\ & =-j 5 \Omega \\ Z_{100 \mu F} & =-\frac{j}{\omega C} \\ & =-\frac{j}{1000 \times 100 \times 10^{-6}} \\ & =-j 10 \Omega\end{aligned}Step 2The equivalent circuit diagram is,(a).Determining the input impedance across a and g terminals,\begin{aligned} Z_{\text {in }} & =(j 5)\|(10)\|[(-j 5)+[(-j 10) \|(j 20)]] \\ & =(j 5)\|(10)\|\left[(-j 5)+\frac{(-j 10)(j 20)}{(-j 10)+(j 20)}\right] \\ & =(j 5)\|(10)\|[(-j 5)+(-j 20)] \\ & =(j 5)\|(10)\|(-j 25) \\ & =\left[\frac{(j 5)(10)}{(j 5)+(10)}\right] \|(-j 25) \\ & =\left(\frac{50 \angle 90^{\circ}}{11.18 \angle 26.56^{\circ}}\right) \|(-j 25) \\ & =\left(4.47 \angle 63.44^{\circ}\right) \|(-j 25) \\ & =(2+j 4) \|(-j 25)\end{aligned}          \begin{array}{l}=\frac{(2+j 4)(-j 25)}{(2+j 4)+(-j 25)} \\ =\frac{-j 50+100}{2-j 21} \\ =\frac{111.8 \angle-26.56^{\circ}}{21.095 \angle-84.56} \\ =5.3 \angle 58^{\circ} \\ =2.81+j 4.49 \Omega\end{array}Step 3(b).Determining the input impedance across terminals b and g,\begin{aligned} Z_{\text {in }} & =[((j 5) \|(10))+(-j 5)]\|(-j 10)\|(j 20) \\ & =\left[\frac{50 \angle 90^{\circ}}{11.18 \angle 26.56}+(-j 5)\right] \|\left[\frac{200}{j 10}\right] \\ & =\left[\left(4.47 \angle 63.44^{\circ}\right)-j 5\right] \|(-j 20) \\ & =(2+4 j-5 j) \|(-j 20) \\ & =\frac{(2-j)(-j 20)}{2-j-j 20} \\ & =\frac{-j 40-20}{2-j 21}\end{aligned}        \begin{array}{l}=\frac{44.72 \angle 243.435^{\circ}}{21.095 \angle-84.56^{\circ}} \\ =2.12 \angle-32^{\circ} \\ =1.798-1.123 j \Omega\end{array}Step 4(c).Determining the input impedance across terminals a and b,j 5 \Omega and 10 \Omega are connected in parallel,\begin{aligned}Z_{1} & =\frac{(j 5)(10)}{j 5+10} \\& =2+j 4 \Omega\end{aligned}-j 10 \Omega and j 20 \Omega are connected in parallel,\begin{aligned}Z_{2} & =\frac{(-j 10)(j 20)}{j 20-j 10} \\& =\frac{200}{j 10} \\& =-j 20 \Omega\end{aligned}Step 5The modified circuit is,\begin{aligned} Z_{i n} & =(2+j 4-j 20) \|(-j 5) \\ & =(2-j 16) \|(-j 5) \\ & =\frac{(2-j 16)(-j 5)}{2-j 16-j 5} \\ & =\frac{-j 10-80}{2-j 21} \\ & =\frac{80.62 \angle 187.125^{\circ}}{21.095 \angle-84.56^{\circ}} \\ & =3.82 \angle-88.315^{\circ} \\ & =0.1123-j 3.82 \Omega\end{aligned} ...