Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Please do rate the answer and comment for any clarification.   due to point load 30 \mathrm{kN}\begin{array}{l}\Delta_{B_{30}}=-\left(\frac{P L^{3}}{3 E I}+\frac{P L^{2}}{2 E I} \times L_{B D}\right) \mid \begin{array}{l}\text { Similarly } \\\Delta_{50}=-\left(\frac{30 \times(3)^{5}}{3 E I}\right. \\+\frac{30 \times 3^{2} \times 9}{2 E I}\end{array} \\=-\left(\frac{30 \times(3)^{3}}{3 E I}+\frac{30 \times(3)^{2}}{2 E I} \times 3\right)^{2}=\frac{-1485}{E I} \\\text { due }+60 k v m \\\end{array}Acc, do Marmell reciprocal laue\Delta_{B} due to moment at E is equal to \Delta_{E} due to moment at B\begin{aligned} \Delta_{E_{6_{0}}} & =-\left(\frac{M L^{2}}{2 E I}+\frac{M L}{E I} \times L_{B E}\right) \\ & =-\left(\frac{60 \times(6)^{2}}{2 E I}+\frac{60 \times 6}{E I} \times 3\right) \\ \Delta_{B_{60}}=\Delta_{E_{\infty}} & =\frac{-2160}{E I}\end{aligned}\begin{aligned} \Delta_{c_{1}} & =-\left(\frac{M L^{2}}{2 E I}+\frac{M L}{E I} \times L_{E C}\right) \\ & =-\left(\frac{60 \times 9^{2}}{2 E I}+\frac{60 \times 9}{E I} \times 3\right) \\ & =-\frac{4050}{E I}\end{aligned} due to reaction at B\begin{aligned}\Delta_{B_{B}} & =\frac{R_{B}(6)^{3}}{3 E I} \\& =\frac{72 R_{B}}{E I} \\\Delta_{C_{B}} & =\frac{R_{B}(6)^{3}}{3 E I}+\frac{R_{B}(6)^{2}}{2 E I} \times 6 \\& =\frac{180 R_{B}}{E I}\end{aligned}due to Reaction at C\begin{aligned}\Delta_{B} \text { due to } R_{C} & =\Delta \text { due to } R_{B}(M c \\\Delta_{B_{C}} & =\Delta_{C_{B}}=\frac{180 R_{c}}{E I} \\\Delta_{c_{C}} & =\frac{R_{c} \times(12)^{3}}{3 E I}=\frac{576 R_{c}}{E I}\end{aligned}\Delta_{B}=0\Delta_{B_{30}}+\Delta_{B 60}+\Delta_{B_{B}}+\Delta_{B_{C}}=0\begin{array}{l}\left(-\frac{675}{E I}\right)+\left(\frac{-2160}{E I}\right)+\frac{72 R_{B}}{E I}+\frac{180 R_{C}}{E I}=0 \\72 R_{B}+180 R_{C}=2835 \\8 R_{B}+20 R_{C}=315-0 \\\Delta_{C}=0 \\\Delta_{C 30}+\Delta_{C_{60}}+\Delta_{C_{B}}+\Delta_{C C}=0 \\\frac{-1485}{E I}-\frac{4050}{E I}+\frac{180 R_{B}}{E I}+\frac{576 R_{C}}{E I}=0 \\180 R_{B}+576 R_{C}=5535 \\20 R_{B}+64 R_{C}=615\end{array}Solue (1) k (2), we get\begin{array}{l}R_{B}=70.178 \mathrm{kN} \\R_{C}=-12.321 \mathrm{kN}\end{array}\begin{array}{l} \sum f_{y}=0 \\R_{A}=30-70.178+12.321 \\=-27.857\end{array}\sum M=0\begin{aligned}M_{A} & =30 \times 3+60-70.178 \times 6-(-12.321 \times 12) \\& =+123.216 \mathrm{kN-m}(C)\end{aligned}(clockuise\begin{aligned}\theta_{c} & =\frac{30(3)^{2}}{2 E I}+\frac{60 \times 9}{E I}+\frac{12.321 \times 12^{2}}{2 E I}-\frac{70.178 \times 6^{2}}{2 E I} \\& =\frac{298 \cdot 908}{E I}\end{aligned}\begin{array}{l}\Delta_{E}=\left(\frac{30 \times 3^{3}}{3 E I}+\frac{30 \times 3^{2}}{2 E I} \times 6\right) \\ -\left(\frac{70.178 \times 6^{3}}{3 E I}+\frac{70.178 \times 6^{2}}{2 E 1} \times 3\right) \\ +\left(\frac{60 \times 9^{2}}{2 E I}\right)+\left(\frac{12.321 \times 9^{3}}{3 E I}+\frac{12.321 \times 9^{2}}{2 E I} \times 3\right) \\ =\frac{-841.423}{E I} \text { (upword) }(\uparrow) \\\end{array} Please do rate the answer and comment for any clarification. ...