**QUESTION**

Text

Image

please answer the questions using the chart. I'll leave a like.

i. Fill in the predicted velocity with sign and $\%$ difference between the predicted and measured values. (Express answers to $3 \mathrm{sig}$. figs.) [8] \begin{tabular}{|c|c|c|c|c|} \hline $\begin{array}{c}\text { Collision } \\ \text { type }\end{array}$ & predicted $v_{1, f}$ & $\%$ diff in $v_{1, f}$ & predicted $v_{2, f}$ & $\%$ diff in $v_{2, f}$ \\ \hline Elastic & -0.259 & 5.06 & 0.438 & 2.99 \\ \hline $\begin{array}{c}\text { Completely } \\ \text { inelastic }\end{array}$ & 0.217 & 13.7 & 0.217 & 13.7 \\ \hline \end{tabular} ii. Fill in the initial value, final value, and $\%$ loss. (Express answers to $3 \mathrm{sig}$. figs.) [6] \begin{tabular}{|c|c|c|c|c|c|c|} \hline \multirow{2}{*}{$\begin{array}{c}\text { Collision } \\ \text { type }\end{array}$} & \multicolumn{3}{|c|}{ Momentum $(\mathrm{kg} \times \mathrm{m} / \mathrm{s})$} & \multicolumn{3}{c|}{ Kinetic Energy $\left(\mathrm{kg} \times \mathrm{m}^{2} / \mathrm{s}^{2}\right)$} \\ \cline { 2 - 7 } & $\begin{array}{c}\text { Initial } \\ p_{1,1}+p_{2, i}\end{array}$ & $\begin{array}{c}\text { Final } \\ p_{1, f}+p_{2, f}\end{array}$ & $\%$ loss & $\begin{array}{c}\text { Initial } \\ K_{2,1}+K_{2,1}\end{array}$ & $\begin{array}{c}\text { Final } \\ K_{1, f}+K_{2, f}\end{array}$ & $\%$ loss \\ \hline Elastic & 0.127 & 0.119 & 6 & 0.0441 & 0.0425 & 3.63 \\ \hline $\begin{array}{c}\text { Completely } \\ \text { inelastic }\end{array}$ & 0.105 & 0.108 & -2.86 & 0.0303 & 0.101 & 66.67 \\ \hline \end{tabular}

(2) Explain the four statements about the elastic collision experiment. [8] Answer: (3) Show $\frac{\left|K_{f, 1}+K_{f,}-K_{L_{2}}-K_{13}\right|}{\left|K_{L_{1}}+K_{L_{i, a}}\right|}=\frac{m_{2}}{m_{1}+m_{2}}$ for a completely inelastic collision and explain how this relation tells that the energy is not conserved. [4] Answer:

(4) Show that $v_{1, f}=v_{1, i}$ and $v_{2, f}=v_{2, i}$ satisfy the conservation equations and explain why it is not a solution to an elastic collision problem. [4] Answer:

i. Fill in the predicted velocity with sign and $\%$ difference between the predicted and measured values. (Express answers to $3 \mathrm{sig}$. figs.) [8] \begin{tabular}{|c|c|c|c|c|} \hline $\begin{array}{c}\text { Collision } \\ \text { type }\end{array}$ & predicted $v_{1, f}$ & $\%$ diff in $v_{1, f}$ & predicted $v_{2, f}$ & $\%$ diff in $v_{2, f}$ \\ \hline Elastic & -0.259 & 5.06 & 0.438 & 2.99 \\ \hline $\begin{array}{c}\text { Completely } \\ \text { inelastic }\end{array}$ & 0.217 & 13.7 & 0.217 & 13.7 \\ \hline \end{tabular} ii. Fill in the initial value, final value, and $\%$ loss. (Express answers to $3 \mathrm{sig}$. figs.) [6] \begin{tabular}{|c|c|c|c|c|c|c|} \hline \multirow{2}{*}{$\begin{array}{c}\text { Collision } \\ \text { type }\end{array}$} & \multicolumn{3}{|c|}{ Momentum $(\mathrm{kg} \times \mathrm{m} / \mathrm{s})$} & \multicolumn{3}{c|}{ Kinetic Energy $\left(\mathrm{kg} \times \mathrm{m}^{2} / \mathrm{s}^{2}\right)$} \\ \cline { 2 - 7 } & $\begin{array}{c}\text { Initial } \\ p_{1,1}+p_{2, i}\end{array}$ & $\begin{array}{c}\text { Final } \\ p_{1, f}+p_{2, f}\end{array}$ & $\%$ loss & $\begin{array}{c}\text { Initial } \\ K_{2,1}+K_{2,1}\end{array}$ & $\begin{array}{c}\text { Final } \\ K_{1, f}+K_{2, f}\end{array}$ & $\%$ loss \\ \hline Elastic & 0.127 & 0.119 & 6 & 0.0441 & 0.0425 & 3.63 \\ \hline $\begin{array}{c}\text { Completely } \\ \text { inelastic }\end{array}$ & 0.105 & 0.108 & -2.86 & 0.0303 & 0.101 & 66.67 \\ \hline \end{tabular}

(2) Explain the four statements about the elastic collision experiment. [8] Answer: (3) Show $\frac{\left|K_{f, 1}+K_{f,}-K_{L_{2}}-K_{13}\right|}{\left|K_{L_{1}}+K_{L_{i, a}}\right|}=\frac{m_{2}}{m_{1}+m_{2}}$ for a completely inelastic collision and explain how this relation tells that the energy is not conserved. [4] Answer:

(4) Show that $v_{1, f}=v_{1, i}$ and $v_{2, f}=v_{2, i}$ satisfy the conservation equations and explain why it is not a solution to an elastic collision problem. [4] Answer: