Q No. 1: Compute the convolution $y[n]=x[n] * h[n]$ for the following pairs of signals. a. $x[n]=1$ for all $n, h[n]=\left(\frac{1}{2}\right)^{n} u[n]+4^{n} u[-n-1]$ b. $x[n]=(-1)^{n}\{u[-n]-u[-n-8]\}, h[n]=u[n]-u[n-8]$ c. $x[n]=2^{n} u[-n], h[n]=u[n]$ Q No. 2: Compute the convolution $y(t)=x(t) * h(t)$ for the following pairs of signals. a. $x(t)=e^{-3 t} u(t), h(t)=u(t-1)$ b. $x(t)=u(t)-2 u(t-2)+u(t-5), h(t)=e^{2 t} u(1-t)$ Q No. 3: Determine whether each of the following system is stable and/or causal. Justify your answers. a. $h[n]=u[n]$ b. $h[n]=\frac{1}{n} u[n]$ c. $h[n]=4^{n}$ d. $h[n]=n\left(\frac{1}{2}\right)^{n} u[n]$ e. $h[n]=(0.99)^{n} u[n+100]$ f. $h(t)=\frac{1}{t^{2}+1} u(t)$ g. $h(t)=e^{t} u(-t-1)$

These are signal and system questions.. Please help me with the answer for these questions

Public Answer

QZ1EVN The First Answerer