QUESTION

Text
Image

# Which of the following is a left Riemann sum approximation of ∫71(4lnx+2)ⅆx with n subintervals of equal length? ∑k=1n(4ln(1+k−1n)+2)1n the sum, from k equals 1, to n, of, open parenthesis, 4 times the natural log of, open parenthesis, 1 plus, the fraction with numerator k minus 1, and denominator n, close parenthesis, plus 2, close parenthesis, times, the fraction 1 over n, end fraction A ∑k=1n(4ln(6kn)+2)6n the sum, from k equals 1, to n, of, open parenthesis, 4 times the natural log of, open parenthesis, the fraction with numerator 6 k, and denominator n, close parenthesis, plus 2, close parenthesis, times, the fraction 6 over n, end fraction B ∑k=1n(4ln(1+6(k−1)n)+2)6n the sum, from k equals 1, to n, of, open parenthesis, 4 times the natural log of, open parenthesis, 1 plus, the fraction with numerator 6 times, open parenthesis, k minus 1, close parenthesis, and denominator n, close parenthesis, plus 2, close parenthesis, times, the fraction 6 over n, end fraction C ∑k=1n(4ln(1+6kn)+2)6nQuestion 5 Which of the following is a left Riemann sum approximation of $\int_{1}^{7}(4 \ln x+2) \mathbb{d} x$ with $n$ subintervals of equal length? (A) $\sum_{k=1}^{n}\left(4 \ln \left(1+\frac{k-1}{n}\right)+2\right) \frac{1}{n}$ (B) $\sum_{k=1}^{n}\left(4 \ln \left(\frac{6 k}{n}\right)+2\right) \frac{6}{n}$ (C) $\sum_{k=1}^{n}\left(4 \ln \left(1+\frac{6(k-1)}{n}\right)+2\right) \frac{6}{n}$ (D) $\sum_{k=1}^{n}\left(4 \ln \left(1+\frac{6 k}{n}\right)+2\right) \frac{6}{n}$  